we create for everyone.learn about electrochemistry more..enjoy..

Galvanic Cell

Electrochemistry : 10.1 Galvanic Cell






Electrochemistry

  • Study of relationship between chemical change & electric work


    Oxidation
  • Loss of electron by species accompanied by an increase in oxidation number

    Ex:




    Reduction

  • Gain electron by a species accompanied by a decrease number of oxidation
    Ex:



          Redox reaction

    • Process which there are net movement of electrons from one reactant to another
    • Also called oxidation – reduction process.
    • Oxidation and reduction occur at the same time.

      Ex:




    Oxidizing agent

    • Substance that accepts electron in redox reaction and undergoes decrease number of oxidation.

      Ex:




      oxidising agent is Fe2O3


      Reducing agent
    • Substance that donate electron in redox reaction and undergoes an increase oxidation number.

      Ex:

    CO is an reducing agent

        key point      
    • Oxidation always accompany by reduction
    • Oxidizing agent reduced
    •  reducing agent oxidise

    ELECTROCHEMICAL CELL
    There are two type :
    • Voltaic cell
    • Electrolytic cell


    VOLTAIC CELL

    • Use spontaneous reaction to generate electric energy
    • System does work on surrounding
    • All batteries contains voltaic cell

    ELECTROLYTIC CELL
    • Use electrical energy to drive non-spontaneous reaction
    • Surrounding do work on system
    • Ex: electroplating & recovering metal from ores


    ELECTRODES

    • Object that conduct electricity between cell and surrounding
    • 2 electrode (anode & cathode) are dipped into electrolyte
    • ACTIVE ELECTRODES
    • Involve in half reaction
    • Ex: zinc (Zn), copper (Cu), Iron (Fe)

    INACTIVE ELECTRODE
    • If no reactant or product can be uses as electrode
    • Ex: graphite (C), Platinum (Pt)
    • The electrolyte solution contain all species involved in the half – reaction 

    ANODE & CATHODE
    • Oxidation half reaction takes place at cathode
    • Electron given up by substance being oxidised (reducing agent) and leave the cell at anode
    • Reducing half reaction takes place at cathode
    • Electron are taken up by substance being reduced (oxidizing agent) & enters the cell at cathode

    ELECTROLYTE
    • Mixture of ions (usually in aqueos solution) that are involved in reaction or that carry charge.

    ESSENTIAL IDEA OF VOLTAIC CELL
    • Component of each half reaction (half – cell) are placed in a seperate container
    • The two half cell are joined by circuit which consist a wire and a salt bridge


    OXIDATION HALF CELL

    • Metal bar (anode) is immersd in Zn2+ electrolyte 
      Ex: ZnSO4
    • Zn is reactant in oxidation half reaction
    • Zn conduct electricity and release electron out of its half cell


    • Mass of Zn electrode decrease

    REDUCTION HALF CELL
    • A Cu metal bar (cathode) is immersed in a Zn2+ electrolyte
    • Ex: CuSOsolution
    • Cu is a product in reduction half reaction
    • Cu conducts electricity and released electron into itself.


    • Mass of copper electrode increase

    RELATIVE CHARGE ON ELECTRODES
    • Anode: 

    • Electron flow from anode to cathode through wire
    • Cathode 


    • Electron are continously generated at anode * consume at cathode

    SALT BRIDGE
    • Contains a solution of non-reacting ion such as KCl,KNO3, Na2SOacts as liquid wire (allowing ions to flow & complete the circuit.

      HOW DOES THE CELL MAINTAIN ITS ELECTRICAL NEUTRALITY 

    Anode Half Cell Cathode Half Cell
    Zn 2+ ions enters the solution causing the excess of positive charge.Cu2+ ions leave the solution causing the excess of negative charge
    Cl- ions from the salt bridge move into anode (Zn) half cellKions from salt bridge move into cathode Cu half cell


      

    CELL NOTATION

    • Ex : Zn(s) l Zn2+ (aq) l l Cu2+ (aq) l Cu(s)
    • Anode left, cathode right
    • 'l' represent phase boundary
    • Use ',' for component that are in the same phase
      Graphite l I- (aq) l I(s) l l H(aq), MnO4- (aq), Mn2+ (aq) l graphite
    • Sometimes we specify the concentration of dissolved component
      Zn(s) l Zn2+ (1 M) l Cu2+ (1 M) l Cu(s)
    • Electrode appear ait far right and left notation.
    • Half-cell component usually appear in the same order as in the half-reaction


          Cu 2+ (aq) + 2e- ------ Cu (s)        (reducing)
                          Zn(s) ------ Zn2+ (aq) + 2e- (oxidizing)

      Cu 2+ (aq) + Zn(s) ------ Cu (s) + Zn2+ (aq) (overall)

    Cell notation: the coefficient is not involved.



     SPONTANEOUS REACTION

    • occurs as the result of different ability of metal to give up their electron to flow through the circuit.


     

    CELL POTENTIAL (ECell)

    • different in electrical potential of electrodes
    • also called voltage or electromotive force (e.m.f)


     

    Ecell > 0
    • sponteneous reaction
      • The more positive Ecell
      • The more work the can do
    • The further the reaction proceed to right


     

    Ecell < 0
    • Non spontaneous cell reaction


     

    ECell = 0
    • The reaction has reach equilibirum
    • The cell can do no more work.


     

    SI UNIT CELL POTENTIAL

    • unit = volt (V)
    • 1V = 1J/C
    C = coulumb (SI unit of electrical charge)


     

    STANDARD CELL POTENTIAL (E0cell)
    • Different in electrical potential of electrodes measured at a specified temperature (usually 298k) with all components in their standard states.
    • standard state 
      • 1 atm for gaseous
      • 1 M for solution
      • Pure solid for electrodes
    STANDARD ELECTRODE (HALF CELL) POTENTIAL (E0half-cell)

    • potential associate with a given half-reaction (electrode compartment) when all component are in their standard states.
    E0half cell = E0anode or E0cathode
    • also call standard reduction potential.
    • example : 
                             Zn2+(aq) + 2e- ------ Zn(s) E0zinc (E0anode)
                            Cu2+(aq) + 2e- ------ Cu(s) E0copper(E0cathode)
                        Zn(s) + Cu2+ (aq) ------ Zn2+ (aq) + Cu(s)

    *changing the balancing coefficients of a half-reaction does not change E0value because electrode potential are intensive properties –does not depend on amount


    E0cell AND E0half cell

    • Example : 
    Half cell reation
                                Cu2+(aq) + 2e- ------ Cu(s)
                             Zn(s) + Cu2+(aq) ------ Zn2+(aq) + Cu(s)

                             Zn(s) + Cu2+(aq) ------ Zn2+(aq) + 2e-
     

    • E0cell = E0cathode – E0anode


     

    STANDARD HYDROGEN ELECTRODE
    • specially prepared platinum electrode immersed in a 1M aqueous solution of a strong acid,H+(aq) or H3O+(aq), through which Hgas at 1 atm is bubled

    DETERMINING E0half cell

    • Use standard hydrogen electrode (SHE)
    • standard reference half-cell

      2H+ (aq, 1m) + 2e- ------ H2 (g,1atm) E0 ref= OV
             Zn2+ (aq, 1m) + 2e- ------ Zn (s, 1atm) E zinc= ?
    Zn(s) │ Zn2+ (1M) ││ H+ (1M) │ H2 (1atm) │ Pt (s)
    E0 cell  = E0 cathode – E0 anode 
                  = E0 ref – E0 zinc 
    0.76 V  = 0.00 V – E0 zinc 
    E0 zinc  = -0.76 V

    Pt(s) │ H2 (1atm) │ H+ (1M) │ Cu2+ (1M) │ Cu (s) 
      
    Anode : H2 (1atm) 2H+ (1M) +2e-
    Cathode : 2e- + Cu2+ (1M)     Cu (s) 

    H2 (1atm) + Cu2+ (1M)     Cu (s) + 2H+ (1M)


     
    RELATIVE STRENGH OF OXIDIZING AND REDUCTING AGENT
    • Example:
    Cu2+(aq) + 2e- ------ Cu (s) E0 = 0.34 V
    2H+ (aq) + 2e- ------ H2 (g) E0 = 0.00 V
    Zn2+ (aq) + 2e- ------ Zn (s) E0 = -0.76 V
    • The more positive E0 value, the more tendency to be reduced
    • Strength of oxidizing agent (reactant)
      Cu2+ > H+ > Zn2+
    • Strength of reducing agent (product)
      Zn > H2 > Cu

    STANDARD REDUCTION POTENTIAL 

    • All value are relative to hydrogen electrode
    • Strength of oxidizing agent – increase up
    • Strength of reducing agent – increase down
    • Half-cell component usually appear in the same order as in the half-reaction
                                                   Cu2+ (aq) + 2e- ------ Cu (s)                        (reducing)
                                                                    Zn (s) ------ Zn2+ (aq) + 2e-        (oxidizing)
                                               Cu2+ (aq) + Zn (s) ------ Zn2+ (aq) + Cu(s)    (overall)

    Cell notation : the coefficient is not involve


     

    WRITING SPONTANEOUS REDOX REACTION

    Zn(s) + Cu2+ (aq) ------ Zn2+ (aq) + Cu(s)


     

    Zn     - stronger reducing agent
    Cu2+ - stronger oxidizing agent
    Zn2+  - weaker (0.9)
    Cu     - weaker (0.9) 
    • stronger oxidizing agent : E0 larger (more positive)
    • stronger reducing agent : E0 smaller (more negative)
    Cu2+ (aq) + 2e- Cu(s) E0: 0.34 V
    Zn2+ (aq) + 2e- Zn(s) E0: - 0.76 V
    • How to determine anode (oxidation) and cathode (reduction) for spontaneous reaction, E0cell > 0 ?
    • Strong reducing agent = E0 larger (positive)
                                                     = E0 cathode (reduction)
    Reduction: Cu2+ (aq) + 2e- ------ Cu (s) E0 =0.34V
    Oxidation :                  Zn (s) ------ Zn2+ (aq) + e- E = - 0.76V

    • Stronger reducing agent     = E0 smaller 
                                                             = E0 anode (oxidation)


    PREDICTING SPONTANEOUS REDOX REACTION USING DIAGONAL RULE
    • Under standard – state condition, any species on the left of a given half-cell reaction will react spontaneously with a species that appear on the-right of any half-cell reaction located below it,
    • diagonal rule !!! 

    Cu2+ (aq) + 2e- ------ Cu (s)     E= 0.34V
     Zn2+ (aq) + 2e- ------ Zn (s)      E0 = - 0.76V

    Search This Blog

    About this blog

    read more,learn more..
    we love chemistry..

    Followers

    About Me

    My photo
    JMC, JOHOR, Malaysia
    We are group from H5 T34.We create this blog for those who want to learn more about electrochemistry.This is our assigment given by Madam Fazleen .Hopefully all the visitors learn something after opened this blog. ~created by: Zila, Wani, As, Thirah, and Su
    Powered by Blogger.

    AziLaH Haris

    AziLaH Haris

    SalWani MuHamAd

    SalWani MuHamAd

    AthiRah MaRiDan

    AthiRah MaRiDan

    SuRaiNi SuHaiMi

    SuRaiNi SuHaiMi

    AsFaiRus BaziLah

    AsFaiRus BaziLah